Man sollte sich frühzeitig überlegen, für welches Fach, welchen Bereich und welches Thema wirkliches Interesse besteht. Wenn man für eine „Sache brennt“, kann die Arbeit dann nur gut werden.
Es gibt Funktionen bei denen die Visualisierung aus der Schule einem nicht mehr weiterhelfen kann. Die weitaus bekannteren reellen Funktionen sind
eindimensional und lassen sich hervorragend mit einem zweidimensionalen Gebilde darstellen. Da jedoch die Menge der komplexen Zahlen zweidimensional ist, würde eine ähnliche Visualisierung vierdimensional und außerhalb unseres Darstellungsvermögens sein. Ein neuer Ansatz mit parallelen
gaußschen Zahlenebenen soll komplexe Funktionen übersichtlicher in einem
dreidimensionalen Raum machen. Dazu werden Linien, die jeden Eingabewert von einer Ebene mit dem dazugehörigen Funktionswert auf der anderen Ebene verbinden sollen, eingezeichnet.
Tatsächlich lassen sich mit derselben Visualisierung bereits bekannte Funktionen neu entdecken und hilfreiche Erkenntnisse gewinnen mit diversen Anwendungen, die sogar dem Wort „komplexe Steigungen“ einen sichtbaren Sinn geben. Die Suche nach der idealen Visualisierung ist gleichzeitig eine Erforschung durch Experimente und ein Versuch Mathematik zugänglicher zu machen.
Download (PDF)2019, Informatik,
1. Platz,
Tobias
Prisching, FH Wiener Neustadt
2015, Chemie,
2. Platz,
Laura
Merx, Heinrich-Heine-Universität Düsseldorf
2017, Geographie,
1. Platz,
Leo
Stöger, Universität Wien